本文共 1214 字,大约阅读时间需要 4 分钟。
x方向和y方向的Sobel算子
import cv2 as cvimport numpy as npimport matplotlib.pyplot as pltimport mathimg = cv.imread('../images/girl.jpg')# gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)def sum_sobel(src): """ src: src input image ddepth: output image depth, -1 mean same as input dx: order of the derivative x dy: order of the derivative y """ dst = cv.Sobel(src, -1, 1, 0) rows, cols, _ = dst.shape return math.ceil(sum(cv.sumElems(dst)) / rows / cols)def my_blur(src, n): dst = src for _ in range(n): dst = cv.blur(src, (8, 8)) src = dst return dstfig, ax = plt.subplots(2, 2, figsize=(5, 5))def plot(src, num, n, index): title = 'origin' if index == 0 else str(n) + ' times blur' title = title + '(' + str(num) + ')' ii = int(index / 2) jj = int(index % 2) ax[ii][jj].set_title(title) ax[ii][jj].imshow(cv.cvtColor(src, cv.COLOR_BGR2RGB))val = sum_sobel(img)plot(img, val, 0, 0)times = [3, 6, 9]for i in range(len(times)): blur_img = my_blur(img.copy(), i + 1) val = sum_sobel(blur_img) plot(blur_img, val, times[i], i + 1)[axi.axis('off') for axi in ax.ravel()]plt.show()
转载地址:http://khfqz.baihongyu.com/